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Abstract

A repairable queueing model with a two-phase service in succession,
provided by a single server, is investigated. Customers arrive in a single
ordinary queue and after the completion of the first phase service, either
proceed to the second phase or joins a retrial box from where they retry,
after a random amount of time and independently of the other customers
in orbit, to find a position for service in the second phase. Moreover,
the server is subject to breakdowns and repairs in both phases, while a
start-up time is needed in order to start serving a retrial customer. When
the server becomes idle, he departs for a single vacation of an arbitrarily
distribution length. The arrival process is assumed to be Poisson and all
service and repair times are arbitrarily distributed. For such a system the
stability conditions and steady state analysis are investigated. Numerical
results are finally obtained and used to investigate system performance.

Keywords: Poisson arrivals, Two-phase service, Retrial queue, Break-
downs, Repairs, Start-up time, Vacation.

1 Introduction

The main characteristics of the queueing model analysed in this paper are (i)
the retrial customers (jobs), (ii) the server breakdowns and repairs, (iii) the
two-phase service and (iv) the start-up (system preparation) times.

Queueing systems with repeated attempts (retrials) are characterized by the
feature that an arriving customer who finds the server unavailable, leaves the
system, joins a pool of unsatisfied customers, the so-called retrial box, and
repeats his demand for service after a random amount of time. Retrial queues
have been widely used to model many problems in telephone switching systems,
telecommunications networks and computer units. For a complete survey on
this topic we refer Artalejo [3], Kulkarni and Liang [17], and the books of Falin
and Templeton [13], and Artalejo and Gomez-Corral [5].
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In most of the queueing literature, the server is assumed to be reliable and
always available to customers. However in practice, we often meet cases where
the server may breakdown and has to be repaired. In queueing literature, there
have been several works taking into account both retrial phenomenon and server
breakbowns with repairs. As related works we mention the papers of Aissani
[1], Aissani and Artalejo [2], Kulkarni and Choi [16], Wang et al. [23].

The assumption of a two-phase service provided by a single server has been
proved useful to analyse many practical situations arrising in packet transmis-
sions, multimedia communications, central processors etc.. Such kind of systems
have been discussed for the first time by Krishna and Lee [15] and Doshi [12], and
more recently have been generalized to include models with vacations, N-policy
etc. (see (6], [9], [14]).

Wang [22], considered a two-phase queueing model with the assumptions of
breakdowns and repairs, in which he assumed that the second optional service
follows an exponential distribution. Kumar, Vijayakumar, Arivudainambi [18],
Artalejo and Choudhury [4], and Choudhury [7] are the first who imposed the
concept of retrial customers in the two phase models. The common feature of
the above papers is that there are no server breakdowns, no ordinary queue and
all waiting customers join the retrial box. Choudhury and Deka [8], generalize
the works of, Wang [22], and Artalejo and Choudhury [4] by considering an
M/G/1 retrial queue with second optional service channel which is subject to
server breakdowns and repair. Wang and Li [24], consider a similar model,
where only the first retrial customer can retry for service after an arbitrarily
distributed time period.

Recently Dimitriou and Langaris [11], considered a two-phase model where
all arriving customers are queued up in a single ordinary queue. After the
completion of the first phase service the customer either proceeds to the second
phase or joins the retrial box from where he retries, after a random amount of
time, to find the server available, and to complete his second phase of service.

In this work we generalize the model of Dimitriou and Langaris [11], allowing
server breakdowns and repairs in both phases of service, while in addition, the
server needs a start-up (system preparation) time in order to start serving a
retrial customer in the second phase of service. Our system can be used to
model any situation with two stages of service where in the first stage a control
and a separation of the serviced units, according to some quality standards or
some measure of importance, must been taking place. If a unit satisfies these
quality standards then it proceeds immediately to the second phase of service
while if the quality of the unit is poor then it is removed from the system and
repeats its attempt to receive a special second service later when the server
is free from high quality units. Moreover the machine (server), is naturally
subject to breakdowns and repairs while a special preparation of the machine
is needed to start serving the low quality unit. Such a situation often arises
in packet transmissions, manufacturing systems, central processors, multimedia
communications, etc.. It is clear that the concepts of breakdowns, repairs, and
the start-up period for the retrial customer, make our model more realistic
compared with models analysed in the above mentioned works.

22



The article is organized as follows. A full description of the model is given in
Section 2. Some very useful for the analysis, results on the customer completion
time and server busy period are given in Section 3. In Section 4 the conditions
for statistical equilibrium are investigated. The generating functions of the
steady state probabilities are obtained in Section 5 and used to give, in Section
6, some important measures of the system performance. Finally in Section 7,
numerical results are obtained and used to compare system performance under
various changes of the parameters.

2 The Model

Consider a queueing system consisting of two phases of service and a single
server, who follows the customer in service when he passes from the first phase
to the second. Customers arrive to the system according to a Poisson process
with parameter ), and are placed in a single queue waiting to be served. When
a customer finishes his service in the first phase, he either goes to the second
with probability 1 — p, or he joins, with probability p, a retrial box from where
he retries, independently to the other customers in the box, after an exponential
time parameter a, to find a position for service in the second phase. In case the
customer chooses to join the retrial box the server starts immediately to serve
in the first phase the next customer (if any) in queue. Let us denote by P, the
customers who are waiting in the ordinary queue or are in any phase of service
but without joining the retrial box and by P,, those who joined the retrial box
and are still there or are now in their second phase of service.

To start serving a P; (retrial) customer, in the second phase, the server needs
a start-up period S, which is arbitrarily distributed with distribution function
(D.F.) S(z), probability density function (p.d.f.) s(z), finite mean value 5 and
second moment about zero 52). If a P; customer arrives during S, this start-up
period is interrupted, the server start serving the P; customer in the first phase
and the P, customer returns to the retrial box.

Every time the server becomes idle (no customers waiting in the ordinary
queue) he departs for a single vacation By which length is arbitrarily distributed
with D.F. Bo(z), p.d.f. bo(z), finite mean value b and second moment about
Zero 5‘()2).

The server is subject to breakdowns and repairs in both phases of service.
Thus the server’s lifetime is assumed to be exponential with parameter /;; when
he serves a P; customer in the jth phase while the repairing time in the jth phase
is assumed to be arbitrarily distributed with D.F. R;(z), p.d.f. r;(z), finite mean

value 7;, and second moment about zero Fﬁz). Moreover if a breakdown occurs in
first phase (a P; customer in service) the customer just being served goes back to
the head of the queue, waiting the server to be repaired and to start, from scrats,
his first phase service again. On the other hand if a breakdown occurs during
the second phase service of a P; customer, the interrupted customer remains
in the service zone and start service, from scrats, upon repair completion. If a
breakdown occurs when the server serves a P, customer (in the second phase of
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course), the Pp customer returns to the retrial box and the server, upon repair
completion, starts serving a P customer (if any) in the first phase or he remains
free and departs for a vacation.

The service times in both phases are assumed to_be arbitrarily distrib-
uted with D.F. Bj;(z), p.d.f. b;;(z), finite mean value b;; and second moment

about zero Eg) for the P; customer in the jth phase respectively 4,7 = 1,2,

(Ba1(z), ba1(z), 521,5521) do not exist). Finally all random variables defined
above are assumed to be independent.

3 Preliminary Results

We agree from here on to denote in general by a*(s), the Laplace-Stieltges
Transform (LST) of any function a(t). Let us define now by F the time interval
from the epoch a P; customer starts his service in the second phase until this
period be succesfully completed. Let also N;(F), be the number of new P;
customers that arrive during F. Note here, that during this period no new P;
customers join the retrial box. Define finally

fi(t)dt = P(t < F <t+dt, Ny (F) =14),  f*(z1,8) = fm e=st Zf’“o filt)Zdt
0 =i

and denote p;(t) = e"‘ﬂ%ﬁ. ‘Then it is clear that

fi(t) = e712p;()b1a(2)

e T pm(8)(1 = Bia(t)) * Sty pa(t)ra(t) * fimm—n(t)
where * means convolution. Thus after manipulations
Bla(s + A +v1z — Az)

1—-B%, (s+A+via—Az '
1—wyo ﬁ;i&_,_,,lz_l;zl l):r';(s +A-Az)

f*(zlas) —

Denote by 57 the time interval from the epoch at which a P; customer starts
his service in first phase until the epoch the server is ready for a “new service”.
We have to point out here that in case of a P; customer, a “new service” starts,
either after the end of the two-phase service procedure, or after the repair caused
by a breakdown in first phase, or because the customer joins the retrial box.
Let also .Sz be the time interval from the epoch at which a P, customer finds a
position for service in the second phase until the epoch the server is ready for
a “new service”. In case of a P, customer a “new service” starts, either after
the completion of the second phase service, or after a possible arrival of a Py
customer during the start-up period, or after the repair caused by a breakdown
in second phase. Denote also by N;(.S;) the number of new P; customers that
arrive during §;. If we define, for j =1,2

aj(kl, ko, t)dt = Pt < S; <t+dt, N,‘,(Sj) =k, i=1,2),

a;(z1,22,8) = f0°° et Yokt > koo @ (K1, k2, t) ¥ k2 gy,
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then it is easy to see that

= 1-8% (stAtwvii—az) o«
a}(21,22,8) = vnz RS ITR (s 4+ A — Az

+B31(s + A+ vy — Az)[pze + (1 = p) f*(21,9)),

. . : - (1)
ab(z1,29,8) = 2220039 4 or () 4 5)[B35(s + A+ vz — Az1)
tomaEEEREEISl (s 4 A - Aay)l
Let us denote
pr =22 ai(21,1,0) |z = 1= Ba(vnn) + M(L = BL1 (vn)) (71 + 55)
iiy v11)(1=8% (v 2
+( P)B1; ‘(81121()512)512( 12)) (Tz & E)] ( )

To proceed further we need the following Lemma the proof of which is a simple
application of the well known theorem of Takacs [21].

Lemma 1 For (i) |z| < 1, Re(s) > 0, or (ii) |z| < 1, Re(s) > 0, or (iii)
|za| <1, Re(s) >0 and p; > 1, the relation
zZ — a; (Zl, 22, S)) (3)

has one and only one root, z; = z(s, 22), say, inside the region |z1| < 1. Specifi-
cally for s =0 and z3 = 1, =(0,1) is the smallest positive real root of (3) with
z(0,1) <1 ifp; >1 and z(0,1) =1 for p; < 1.

Let us denote now by B the duration of a busy period of P; customers
which starts with i = 1,2,... P; customers, and let N'(B%)) be the number of
new P, customers joining the retrial box during B(®. Define

D (t)dt = Prft < BY <t +dt, N(BY) = m].

Then it is known from Langaris and Katsaros [19] that ‘

"9 (s, 2) f —“ng(t rdt = 2'(s, ),

where z(s, z2) is defined in Lemma 1 above.

Let now V, be the random interval from the epoch the server departs for a
single vacation until the epoch he is for the first time idle. Let also N(V') be the
number of the new P; customers joining the retrial box during V' and define

vm(t)dt= Pt <V <t+dt, N(V)=m),
oz = oo e Yoo vm(t)2dt.
Then
vo(£) = Po()bo(t) + 52, Ps(t)bo(t) * 6§ () * vo(2),
Um() = T2 Pi(D)b0(2) * Theo 95 (8) * vm—s(2),
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and so after some algebra

Bals +) 5
L4+ Bo(s+A) — Bo(s + A — Az(s, 27))

v*(s,25) =

In a similar way, denote by C' the random interval from the epoch a P
(retrial) customer finds a position for service (in the second phase of course)
until the epoch the server departs for the single vacation, and let N(C) be the
number of the new customers joining the retrial box during C. If

em(t)dt = P(t < C < t+dt, N(C) =m), c'(s,2)= f et Y ()t
0 s

then by writing for ¢y, (t) a similar expression as in (4) we obtain after manip-
ulations

c*(s, 22) = a3(e(s, 22), 22, 5)- (6)

Now we are ready to define the concepts of the Generalized Completion time
and Generalized busy period. Generalized completion time, W, say, of a Py
(retrial) customer is the time elapsed from the epoch this customer succeed to
find a position for service until the epoch the server is idle for the first time,
while generalized busy period, W; say, is the time interval from the epoch a
Py customer arrives in an idle system until the epoch the server is idle again . If
now we denote by N(W3), N(W;) the number of new retrial customers joining
the retrial box in W5, W1, respectively, and define

w@(t)dt = Pt < W; <t+dt, N(W;) = m),

0 i=1.9.
wi(s,z2) = [y €7 Yoo wne (t) 2 dt,
then it is clear that
w3 (s, 22) = c*(s, 22)v*(s, 22), wi (s, 22) = z(s, 22)v* (s, 23), (7)

and so X " (5,22) B (42
wi(s,z2) = 1+B5(s+X)—B5 (s+A—2z(s,22)) ?

(s,22)B5 (s+2) @)
* _ z(s,z s
wi(s,z2) = 155 (s+,\)—f3;(3+x—xm(s,22))-

Differentiating the obtained relations with respect to z, at the point (z =
1, s = 0) we arrive easily at

a0 m)m = 2P0,

dZQC (0 .z2)|z2=1 — l_fz,t;r_—’

dzz'u *(0:22)| gyt = —Eﬁ'
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where

pe= (1- p1)(1— 5*()\)5;2(7/22)) (9)

BT ()L = 8" () + A5 W) (L~ Bha(va2)) 72 + 55,

and so

E(N(W3)) = Z5w3(0, %) |z = 5222,

h (10)
E(N(W1)) = £w}(0, 25)]s,m = 2220,

Moreover, by differentiating relations (8) with respect to s at the point (2 =

1,5 = 0) we obtain the mean duration of W2, W1, respectively, as

RO = Sy 109
+As*()\)(1 — 6;2(V22))(Fg + VLR)],

* Vi1 T, G L 11
Bw) = ol (1 - g )+ k) an
+(I—P)ﬁn%Uizl(),fzz—)ﬁlg(vlz)) (772_!_;1;)]

Let us denote (see relations (2), (9))
pP=pot Pt pa
We are now ready to state the following theorem.
Theorem 2 For (i) Re(s) > 0, or (it) Re(s) = 0 and p > 1, the equation
23 — wy(s, z2) =0, (12)

has one and only one Toot, zy = $(s) say, inside the region |z3| < 1. Specifically
for s =0, $(0) is the smallest positive real root of (12) with ¢(0) <1 ifp>1
and $(0) =1 for p < 1.

Proof: It is clear that w3(s, #2) is LST of a probability generating function
- (see (8)). Thus for the closed contour |z| = 1 and under the assumption (i) we
have always (on || =1)

|w (s, 22)] < wi(Re(s),1) < w3(0,1) =1 = |2,

while for Re(s) > 0, we need to consider the closed contour |z| =1—¢ (e>0
a small number) in which case

|wi(s, 22)| < wi(Re(s),1 —€) <1—e€=|z), (13)
only if in addition
d Potpy _ d
* 1~ A= — —_ i w—
d€w2(01 6) iE—O 1 _ ,01 < dE (1 E) 16-—0 1?
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or we need p > 1 for the relation (13) to hold. A final reference to Rouche’s
theorem completes the first part of the proof.

Moreover for s = 0 the convex function w3 (0, z) is a monotonically increas-
ing function of zg, for 0 < 2z; < 1, taking the values w3 (0,0) < 1 and wi(0,1) =1
and so 0 < ¢(0) <1 if p > 1, while for p < 1, ¢(0) becomes equal to 1 and this
completes the proof. O

4 Stability Conditions

Let N1(t), Na(t) be the number of P;, P;, customers in the ordinary queue (not
in service) and in the retrial box respectively at time ¢ and denote by

0 server on vacation at t,
s server on start up att,
(,9) server busy on jth phase with P; customer at t,
§e= (7,4, 5) server under repair from breakdown on jth phase
during service of P; customer at t,
id server idle at t.

Consider also the time instants
To=0<T <l | T e

where T; is the epoch at which the server becomes idle for the ith time, and let
Na; = No(T; +0), ¢ = 0,1,2,..., i.e. No; denote the number of customers in
the retrial box just after T; . It is clear that the stochastic process {Ng; : i =
0,1,2,...} is an irreducible and aperiodic Markov chain. The following theorem
gives the condition under which this Markov chain becomes positive recurrent.

Theorem 3 For p < 1 the Markov chain {Ny; : i = 0,1,2,...} is positive
recurrent.

Proof: To prove the theorem, we will use the following criterion (see Pakes
[20]):

An irreducible and aperiodic Markov chain (Y, ; n > 0), with state space the

nonnegative integers, is positive recurrent if |0x| < co for all k =0,1,2,... and
lim supdy, < 0, where 8, = E[Ypy1 — Yn | ¥, = k.
k—oo

For the Markov chain of our model, let
hi,m(t)dt = Prt < Trpq — Tp < t+ dt, Nons1 — Nop = m| Nayp = k).

Then it is easy to see that for m =0, 1,2, ...

)

hiem (t) = e~ Okt 4 (D () 4 pge=(tka)t w,(,ﬂl (t)
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while for m = —1

B, —1(t) = kae Okt 4 po(t)s(t) « ev22pg (2)ba2(t) * vo(t)
+hae=AFTka)t & g (£)s(2) x e7V228 3000 py(t)baa(t) * gé") (t) = vo(t),
and so

£ = Iw* (s, z) + E2wi(s, 2
f e Y hum(t)mdt = il Si )\:k;( ). (14)

0 m=-—1

Differentiating (14) with respect to z at the point (z = 1,s = 0) we arrive at

_ AE(N(W1)) + ka[E(N(W2)) — 1]
A+ ka ’

O k=0,1,...,

where E(N(W1)), E(N(Wa)) have been found in (10).
Thus for p < 1 we realize that |d;| is finite for all k£ and also limsupdx =
k—o0

E(N(W2))—1= %"f—f—l < 0 (for p < 1) and the criterion is satisfied. O

For a stochastic process (Y (t) ; t > 0) we will say that it is stable, if its
limiting probabilities as t — oo exist and form a distribution. Consider now the
stochastic process

Z = {(N1(t), Na(t), &) : 0 <t < oo},
where N;(t), £, have been defined above. Then
Theorem 4 For p < 1 the process Z is stable.
Proof: Consider the quantity
my = E(Ty| Nao = k).
Differentiating (14) with respect to s (at z =1, s = 0) we obtain

_ AB(Wi) + kaB(W) + 1
k= A+ ka ?

and if g k =0,1,2, ..., are the steady state probabilities of the positive recur-
rent (for p < 1) Markov chain {Ng; : i =0,1,2,...} then

q-m= qumk = E(Wz) + {1 + A[E(Wl) - E(W2)]} Z X f_kka' (15)
k=0 k=0

Now it is clear that there is always a finite integer k* such that

! >1> 1
At (k* = 1)a A+ k*a’
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and so

T T E* =1 g
k0 Tm = k=0 sy Zf—m itz <€ lasn s
k*—1
+ 2 ke Ok = Zk 0 ,\+ka + (1 - 3750 k) < oo,

and so from (15) using (11) we understand that q - m < co.

Consider finally the irreducible aperiodic and positive recurrent Markov Re-
newal Process {N, T} = {(N2a, Tn) : n =0,1,2,..}. It is easy to see that
the stochastic process Z is a Semi-Regenerative Process with imbedded Markov
Renewal Process {N, T’} and as (for p < 1) q- m < oo it is clear that Z is, for
p <1, stable (Cinlar [10], Theorem 6.12, p. 347). O

5 Steady State Probabilities

Let us assume that p < 1 and so a state of statistical equilibrium exists for our
model. Let also N; = limy o N;(2), i = 1,2, € = lims oo ;. Define finally for
i,j=1,2

g(k2) = P(Ny =0, Ny = ky, £ =id), _
ps(k2,z)dz= P(N1=0,Npa=ky, {=5,2<85 <z+dx),
po(kl,kg,w)d:l: P(Nlikl,N2=k2,£=0,$<.§g <.’L'+d$)
pij(kl,kg,.’ﬂ)dx P(Nl =k, No =k, ¢ —(’b j) < B,J S:c+dm)
Prij(k1, k2, z)dz = P(Ny =ky, No =ky, & = (1,4,7), z < R; < z +dx),
(16)

where X the elapsed duration of any random variable X. If finally

Q(z2) = zkggo q(kg)z?,
Py(z1,22,2) = Zkg)ﬂps(k2’ )zg )
Po(z1,22,2) = Ekpo Zk2>0p0(k11 k2a$)z1 22 )
Pij(21,22,) = Zk1>0 Ek2>0 pij(k1, k2, )zllz;‘:‘z‘
Prij (21, 22, T) = Zklzo Ekzgo pNJ(kli ks, m)zl 22 ]

then by connecting as usual the probabilities (16) to each other we arrive easily,
for z > 0, at

Ps(22,2) = Py(22,0)(1 — S(z)) exp[—Az],
Pg(zl, z2,m) = Pg(zl, 29, 0)(1 i B{](JJ)) exp[—(A = )\zl)x],

Pij(z1,20,%) =  Pij(z1,22,0)(1 — By(z)) exp[—(\ + vi; — Az1)a], (17)
Prij(21,22,8) = Prij(21,22,0)(1 — Ry(z)) exp[—(A — Az1)a],
and d
azEEQ(;.'g) + AQ(z2) = Po(0, 22,0)85(N). (18)
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In similar way we obtain for the boundary conditions

Ps(z230) == ad;:é (22)1
Po(0,22,0) =  pzaPr1(0, 22,0)871 (A + v11) + Pra2(0, 22,0)r3(})
+Pys (0, z3,0) B2 (A + vaz) + P12(0, 23, 0) B15 (A + v12),

ng(O,zz,O) = Q%Q(Zz)s*(A),

1-8%, (M+v11 —Az1)
_ BT (tvii—Azn)
Prii1(21,22,0) = vaa—35 Py1(21, 22,0),

1-87, (A +viz—X=
— ol 1" 2. ol Dl S 1
Pria(21,22,0) = vi2 ﬁ,\_‘_(,,u_.lizl 1) Pry(21, 22,0),

1=8%, (A vaa—Az
_ 32 (Avaa—Azi)
Proa(z1,22,0) =  vasze Alyzzlfizl 1) Pys(0, 23, 0),

(19)

and
1—p)B5 (A +v11 — Az1)Pii(21, 22,0
Pa(21,%,0) = ( ) 111—(.3' (A-::n—a\z:)) *11( =y ), \20)
1 — vy =g (A — Az )

while

221Q(22)+a g Q(z2) 0 (21,22,0)— Fo(0,22,0) [1+85(X)—B5(A—Az1))
z1—aj(z1,22,0)

Pll(zla z270) =

(21)
Replacing now in the numerator of (21) the zero (in |z1| < 1) 2(22) = (0, 22)
of the denominator we obtain

AE(ZQ)Q(ZQ) -+ Q%Q(Zz)c* (0, 212)

Pol0:22:0) = TR0 - B3~ datew) =
Substituting (22) into (18) we arrive easily at
e ~w3(0,22)) 2 Qa) + A1~ w0, 2)Q) =0, (23)
Let now
w(Z2) - 1-— wT(U,ZQ)

29 — w;(O, 22),
then for p < 1 the quantity z; — w}(0,22) never becomes zero in |z| < 1
(Theorem 2) and also

: pB11(v11) + po
1 .o 10 kY
Jim w(z) T—p

cO.

Thus w(z;) is an analytic function in |z2| < 1 and a continuous one on the
boundary and so for any |23 < 1 we can solve equation (23) and obtain

L1 —wr(0,u
Q) = Qexp(-3 [ L=l 0 gy (24)

2 wi(0,u) —u
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Replacing back Q(2z) into the generating functions defined above, and demand-
ing the total probabilities to sum to unity we arrive at

lexp
e _ , 25
o (1+ 53y) 811 (v11)B3a (vaz)s* (M) 2

and so the generating functions of the steady state probabilities are completely
known.

The following theorem shows that the condition p < 1 is also necessary for
a stable system.

Theorem 5 If the stochastic process Z is stable then p < 1.

Proof: Suppose that Z is stable and p > 1. Then from Theorem 2 the
equation 23 — w3 (0, z3) = 0 has a strictly less than one root (¢(0) < 1) and so
A(1 - wi(0,¢(0))) # 0. By putting now ¢(0) instead of z; in (23) we obtain

AL — wi(0,4(0)))Q(¢(0)) = 0,
and so Q(¢(0)) = X q(5)47(0) = 0 with 0 < #(0) < 1. Thus ¢(j) =0 V j and
also from the generating functions in (17)-(22) it is clear that all probabilities
become zero. This of course contradicts the hypothesis that the system is stable.

Suppose finally that Z is stable and p = 1. Differentiating (23) with respect
to 23 (at zz = 1) we arrive (for p=1) at

T A1 =010, 5)lemr Q) = ~AE(V(W2))Q(1) =0,

and so Q(1) = > ¢(j) = 0 and this again contradicts the hypothesis that the
system is stable.

6 Performance Measures

In the sequel we will use formulas for the generating functions obtained above,
to derive expressions for the system performance. Thus by putting 2; = 25 =1
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into relations (17)-(22) we obtain easily

Plidle] = 1) = 1=42 ,
lidte] = Q(1) (L4 52870811 (v12) B3, (vaa)s* (A)
P[server busy in 15" phase] = Ppi(1,1) = %,

P[server busy in 2™ phase] = Pia(1,1) 4+ P2(1,1)
A(1=-p)(1—B75(v12)) ki Ap(1—B3,(v22))

v12f75(v12) V2283, (v22) ?

)\bD{PlBu(V11)+(1'-p)/(1+ﬂ_’i%)]
B (W) B (v11)B3,(vaz)s* (;‘) )

Plrepair in 1% phase] =  Pru(1,1) = ‘{lﬁlf(u“g)n) ™

Plrepair in 2" phase] = Pr12(1,1) + Pro2(1,1)
= | A(1—p)(1-B7,(¥12)) -+ Ap(1—83, (v2z))

Bz (v1z) B3, (va2)

P[start up] = P,(1)= Bé’:%;z)ii)l\ _

In order to obtain now the mean number of customers in the ordinary queue
(excluding service) and in the retrial box, we have to differentiate relations
(17)-(22) with respect to z; and z respectively at the point (21,2) = (1,1).
Let us denote a(t) the first order derivative of any function a(t). Then after
manipulations

Plvacation] = Pp(1,1) =

172,

2 ' - *
E(N1,£=(1,1)) = Vnﬁ;l(m)[(D+D;(é_§5(m)) +511(V11)+ 5u1fu11 i
2rq D v
E(Ny,€ = (1,2) = 52mB (1 - Bla(vna) 022 — £
Bla(w12)+(1-B12 (112))(Fot 515 1—
+ R Bl + S,

By, € = (n1,1) = gy Fall = By (vm) + A(PEERG=E )
P 1-8% (v11) ) 1- 8
+B11(vn) + —HL=)] + =-(1 - A1 (vn))}

_ _ A%(1—p) [ * (D+D) _ B1i(vu)
E(Ny, €= (r,1,2)) = —(—‘lﬁzz S {mal(1 - B2 (v12)) (3a=5) — )
3 ( _p* sy L e _a* =(2)
Bl O P Gt o)) 4 7 (11g) + 222 4+ B2 (1 - B (v12))}

B1a(v12)
2 . %k
E(N,§=(2,2)) = m%%m(ﬁzz(vzz) + 1—%—’&)
2 . % v
B(N1,& = (1,2,2)) = 525y F2(Paa(v22) + %—”zzu) + 521 - By v,
A5

B(N1,€ = 0) = s mnysmeaewm P n) + o gl

(26)
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and

Il

BNy 6= (1)) = HEuly

V11 3

E(Ny, & =(1,2) = (1-p)1 313(1112)),511(1,11)L

v12875 (v12)
E(N2,¢=(r,1,1)) = 71(1- B7;(vu1))L,
E(Ny, &= (r,1,2) = rp{=B0=Luludsin)

E(Ny ¢ =s)= == Qlps
E(Np, € =(2,2)) = Lals) sy,
E(N2, £ =(r,2,2)) = Fas™(A)(1 — iz V”))[W + M],
E(N;,£=0)= ﬁo(A)[ A)ﬁgz(m)(1+ =)+ M],

— — ———E-——-—A
E(N%f = ?'d) T as* (MB35, (va2)?

7

where

D= 2[By(m)+ 1= Bhu)F+ )] + A1 - 5 (rn))F®

Vi1
+2(71 + 517) (Bia (va) + 2Bl y) o MBS0 (1 _ g (15))72
2(1-Biz (12)) (Fa+ 53
F2Fa + 535 (Bra(via) + 2 TR (37 (1)
1~ Bia(via)) (o + 7))} — BURESEREENAC0) (4 L),

D= m{—"(—bﬁu v11) +—"-—]+P511(V11) *(A)

;9 )
X[(1~ B33 (v22))7? + 27 + 1) (B (v22) + 2Lzl
and

A2ps*(A) B3, (vas)(D+D

L= 2ePugelOr0) 4 2020+ 28) + gbs oo + PBL (1)
X[1—s*(A) + As*(A )(ﬁzz(ifzz) + (1= Baa(v22)) (P2 + 7))
—XpB11 (v11)s* (N) Bay (vaa)]},

_ A¥W?B1 (vu)(D4D) ApBT (v11) 2B 1

M= =555 + i lamttintm U+ 28y + ooy P
+pB11(v11)[1 = s*(X) + As* ()\)(522(”22) + (1 = B32(v22)) (72 + u—zz))]]
—ApBi1 (v11)}-
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7 Numerical Results

In this section we use the formulae derived previously to obtain numerical results
and to investigate the way the mean number of customers in the retrial box
E(N3) is affected when we vary the values of the parameters.

To construct the tables we assumed that the vacation time Uy, the service
times, the start-up time and the repair times, follow exponential distributions
with p.d.f.’s respectively,

bg(ﬂ';) = 31_6—(1/50):1:, b‘i'.j(x) o 3%&_(1/5,:,')1;, 33.7 =1,2,
s(z) = 1 —(1/s ri(z) = %e—(l/ﬂ')w, i=1,2.

Moreover we assume that in all tables below bis = 0.33, 73 = 0.25, p =
0.5, Vil = 3, Viz = 4,

Table 1 shows the way E(N2) changes when we vary the mean vacation time
bo for increasing values of the mean arrival rate A. Here one can observe that
even for a small value of A\, A = 0.2 for example, E(N) increases dramatically
from 0.5895 to 796.81 when we pass from a system without vacation period
(bo = 0) to the system with bo = 2. Moreover when the arrival rate A increases
to A = 0.5, even a small change from by = 0 to by = 0.2 increases the mean
number of retrial customers from 10.983 to 291.55. Thus we must be very careful
on the vacation period that we must allow, in order to avoid a rather overloaded
retrial box.

A\Bo o | o2 | o3 [ o5 | 1 | 2
0.2 | 0.5805 0.7528 0.8871 1.0935 2.1781  796.81
0.3 | 1.361 1.9342 2.5174 3.6847  75.904

0.4 | 32738 5.9673 10.894 74.195

0.45 | 5.553 14307 104.85

0.5 | 10.983 291.55

0.55 | 34.323

Table 1: Values of E(Na) for by = 0.5, bog = 0.25,
5=0.2, 7o =0.25, a=0.8, vag = 5.

Table 2 contains values of E(N3) when we vary the mean retrial rate F(retrial)=
1/a. The first column (E(retrial)= 0) corresponds to the E(N3) of our model
assuming that @ — co. One can observe here the increase of the mean num-
ber of retrial customers, an increase that is more apparent when A increases.

Moreover one can make conclusions on the mean retrial interval that must be
allowed, in order to achieve a suitably small size of the retrial box.

M\ E(retrial) 0o | o0 | 02 | 1 | 2 I 10
0.2 0.252 026  0.3322 0.6526 1.0532  4.2581
0.3 0.7735 0.7921 0.9593 1.7021 2.6306  10.059
0.4 2.8124 2.8628 3.3171 5.3363 7.8603  28.052
0.45 7.3029 7.415  8.4235 12.906 18.509  63.335
0.5 161.15 163.23 182,01  265.47  369.79 12044
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Table 2: Values of E(N3) for by = 0.2, bj; = 0.5,
boy = 0.25, 5=10.2, 7o = 0.25,v9 = 5.

s | 02 | oa7 | os | 13 | 278
02 | 07528 0.868 1.0616 2.1158 354.24
0.3 | 1.9342 25135 3.7609 97.974

04 | 59673 11.164 119.95

0.45 | 14.307 128.85

0.5 | 291.55

Table 3: Values of E(Ny) for by = 0.5, byy = 0.25,
Bo=0.2, 72 = 0.25, & =0.8, vag=5.

Table 3 contains values of E(N;) when we vary the mean start-up time 3,
for increasing values of A. We have to observe here the crusial role of start-up
time in the evolution of our system. Note that for big values of this time period
(5 = 2.78), even a small value of A\, A = 0.2 for example, increase E(Ns) to
354.24. This is quite reasonable if we realise that an arrival of a P; customer
during the start-up period forces, the P, customer, again into the retrial box.

Table 4 shows the way E(N,) changes when we vary the mean repair time in
second phase 7. One can observe again that the repair time plays an important
role in the system performance as it increases in some cases dramatically, the
mean number of retrial customers.

M\ T2 01 | 025 | o4 | o065 | 1.3 | 26
0.2 | 0.6631 0.7528 0.8582 1.0811 2.2152  1279.6
0.3 | 1.5661 1.9342 2.4495 3.9389  578.09

0.4 | 3.9381 5.9673 10.623 693.87

0.45 | 7.0491 14.307 84.692

0.5 16.16  291.55

0.55 | 183.55

Table 4 : Values of E(N3) for by = 0.5, by = 0.25,
bo=0.2, 5=0.2, =038, vy = 5.
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